Key Info
Duration: 2023-2027
Acronym: Inphomir
PI Name: Padraic Morrissey
Topic: HORIZON-CL4-2023-DIGITAL-EMERGING-01-51
Title: INdium PHOsphide-based advanced Monolithically integrated photonic building-blocks at near and midInfraRed wavelengths
Coordinator: G.E.M. ELETTRONICA SRL
Total Participants: 8
EU Contribution: € 4,999,637
Project Info
Innovative ground-breaking technologies such as nano-satellite-based space navigation and autonomous navigation are currently hindered by the lack of compact, efficient sensing devices. The adoption of photonic integrated circuits (PICs) for these applications has been restrained by the difficulty of integrating complete photonic sensors without optical interface within the same chip.
The aim of the INPHOMIR project is to provide a competitive and independent European supply chain of monolithic PIC building blocks, operating at near- and mid-infrared wavelengths, by proposing the Indium Phosphide platform as a valid solution for a technological scale-up. The scientific activities will involve the validation of PICs with new ultra-low-loss waveguides and new mid-infrared active devices; and the first demonstration of advanced building blocks such as extremely-high-quality factor resonators at telecom (exploring optical loss compensation and slow light effect in photonic crystals), Hertz-level narrow-linewidth quantum cascade lasers and ultra-low-power sensitive heterodyne detectors at mid-infrared wavelengths.
These advanced components will be employed to realise for the first time an integrated optical gyroscope and a dual-band mid-infrared FMCW lidar. These two novel sensors will be put together onto a multi-chip module board to validate a novel multi-sensorial unit with unique ranging and inertial sensing capabilities, to be exploited for aerospace missions of low-earth-orbit nano-satellites and self-driving drones. Thus, a consortium has been established, constituted by academic and industrial partners, to provide the necessary expertise and synergy in frontend (design, microfabrication) and backend (packaging, test, sensor fusion) research activities as well as specification definition and technological validation/exploitation of the developed use cases. The proposed multi-sensor module will boost miniaturised and advanced technologies in leading EU industries.